4. INTERACCION DE LAS RADIACIONES CON LOS OBJETOS DE LA 
SUPERFICIE TERRESTRE (continuación)

Dada su simplicidad y claridad el concepto de superficie lambertiana se utiliza usualmente  como una aproximación del comportamiento óptico de los objetos observados por  percepción remota. Sin embargo, esta es una aproximación que pocas veces se cumple para las superficies naturales, particularmente cuando el sensor opera fuera del nadir, es decir, en observaciones laterales. En efecto, las propiedades de reflectancia de un objeto pueden variar, no sólo con la longitud de onda sino también con los ángulos de irradiación y de observación. Se define así una Función de Distribución de Reflectancia Bidireccional  (BRDF: bidirectional reflectance distribution function) que no es sino la reflectancia espectral de un objeto en función delas geometrías de iluminación y observación que se le apliquen. La función BRDF es necesaria en muchas aplicaciones de percepción remota para efectuar correcciones en mosaicos de imágenes, para clasificaciones de coberturas terrestres, para detección de nubes, correcciones atmosféricas etc. y se han desarrollado modelos matemáticos para representarla. Si bien no entraremos en mayores detalles sobre este tema  debemos señalar que esta función, matemáticamente compleja, simplemente describe algo  que nosotros observamos día a día: que los objetos lucen diferentes cuando los observamos  desde diferentes ángulos o cuando los iluminamos desde diferentes direcciones. Así por  ejemplo, el campo de soja de la Fig. 10 cuando el observador está de espaldas al sol (a) o  cuando está de frente a él (b). En este último caso se observa la reflexión especular de  muchas hojas. 

Dada la importancia de la reflectancia espectral en Percepción Remota creemos interesante analizar aquí las características espectrales de algunos objetos que aparecen muy frecuentemente en las aplicaciones de esta tecnología: vegetación, suelo y agua. En la Fig. 11 se representan las correspondientes curvas de reflectancia espectral.

<< PAGINA ANTERIOR - INDICE DEL TUTORIAL - PAGINA SIGUIENTE >>

Aplicaciones prácticas de la percepción remota satelital

INDICE DEL TUTORIAL:

1- INTRODUCCION A LA PERCEPCION REMOTA

2. NATURALEZA DE LAS RADIACIONES ELECTROMAGNÉTICAS

3. INTERACCION DE LA RADIACION CON LA MATERIA Y ORIGEN DE LOS ESPECTROS

4. INTERACCION DE LAS RADIACIONES CON LOS OBJETOS DE LA SUPERFICIE TERRESTRE.
   INTERACCION DE LAS RADIACIONES CON LOS OBJETOS DE LA SUPERFICIE TERRESTRE (continuación)
   LA REFLECTANCIA EN LOS VEGETALES
   LA REFLECTANCIA EN EL AGUA

5. INTERACCIONES ATMOSFERICAS

6. LA ADQUISICION DE DATOS Y LAS PLATAFORMAS SATELITALES
    LA ADQUISICION DE DATOS Y LAS PLATAFORMAS SATELITALES (continuación)
    SATELITES METEOROLOGICOS Y AGROMETEOROLOGICOS
    LOS NUEVOS SATELITES PARA LA OBSERVACION DE LA TIERRA
    RECEPCION Y TRANSMISION DE LA INFORMACION SATELITAL

7. SENSORES
    7.1. Consideraciones generales
    SENSORES (continuación)
    7.2 Naturaleza de los detectores
    SENSORES: BANDAS ESPECTRALES LANDSAT TM y SPOT HRVIR
    7.3 Estudio de dos casos: LANDSAT y SPOT
    7.4 Resolución
       7.4.1 Resolución espacial
       7.4.2 Resolución espectral
       7.4.3 Resolución radiométrica
       7.4.4 Resolución temporal
   7.5 Escala y resolución espacial.

8. ESTRUCTURA DE LAS IMÁGENES DIGITALES
    ESTRUCTURA DE LAS IMAGENES DIGITALES (continuación)

9. PROCESAMIENTO DE LAS IMÁGENES SATELITALES
    PROCESAMIENTO DE LAS IMAGENES SATELITALES (continuación)
    9.2 Realces
       9.2.2 Filtrado espacial
       9.2.3 Análisis por Componentes Principales
       9.2.4 Combinaciones de color
               Combinaciones de color (continuación)
    IMAGENES SATELITALES - CLASIFICACION
    9.3 Clasificación
         Clasificación (continuación)
            9.4.1 Clasificación supervisada
            9.4.1.2 Clasificador por paralelepípedos.
            9.4.1.3 Clasificador por máxima probabilidad (maximum likelihood)
   Clasificador por máxima probabilidad (maximum likelihood) - (continuación)
         9.3.2 Clasificación no supervisada
         9.3.3 Estimación de la exactitud de una clasificación: Matriz de confusión
   Estimación de la exactitud de una clasificación: Matriz de confusión (continuación)
         9.3.4 Otros métodos de clasificación
            9.3.4.1. Clasificador de red neuronal artificial
                        Clasificador de red neuronal artificial (continuación)
            9.3.4.2 Clasificadores difusos (fuzzy classifiers)

10. ALGUNAS APLICACIONES DE LA PERCEPCION REMOTA
     10.1 Aplicaciones en Agricultura.
         10.1.2 Indices N-dimensionales “Tasseled Cap”
         10.1.3 Indices de vegetación a partir de imágenes hiperespectrales
         10.2.1 Generalidades sobre el infrarrojo térmico
         10.2.2 Aplicaciones del infrarrojo térmico
             10.2.2.1 Temperatura del mar
             10.2.2.2 Temperatura terrestre
    10.3 Monitoreo de áreas de desastre
         10.3.1 Algunos ejemplos típicos
         10.3.2 El monitoreo a escala global de desastres

APENDICE I : NOCIONES BASICAS SOBRE SENSORES DE RADAR

APENDICE II: BIBLIOGRAFIA SUGERIDA

 

OTROS ITEMS DE INTERES

Galería de imágenes

 

Plataformas de observación

 

Aeropuertos del mundo

 

Imágenes satelitales y seguros

 

¿Qué es la resolución?

 

Petróleo

 

Forestación

 

Estudios de viabilidad

 

Mercados de futuros

 

Cultivo del arroz

 

Nuestra misión

 

Nuestros servicios

 

¿Qué es la percepción remota?

 

¿Qué es una imagen satelital?

 

Uso del GPS

 

Estación rastreadora

 

Pasturas

 

Monitoreo de incendios

 

Sequías

 

Recursos naturales

 

Cultivo del tabaco